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Aging and age-related diseases share several biological mechanisms, 
forming a finely controlled network where inflammation plays an en-
compassing key role. In the Central Nervous System (CNS), glial cells 
can modulate neuroinflammation by promoting neuronal homeostasis 
and limit neurodegeneration. However, age-related systemic inflam-
mation (i.e. inflammaging) leads to additional deteriorations of both 
microglia and astrocytes causing an exacerbation response of these 
cells to stimuli. Type 2 diabetes (T2DM), a chronic metabolic disorder 
characterized by hyperglycemia, has also been associated with multi-
ple organs loss, including the brain. Numerous studies have underlined 
direct correlations between diabetes, cognitive decline and dementia, 
however exact mechanisms related to neurodegeneration in T2DM re-
main to be elucidated. It widely recognized that aging is considered the 
most critical risk factor for Alzheimer’s disease (AD), however there are 
increasing data highlighting that metabolic disorders are also strongly 
associated with an increased risk of AD and T2DM. Indeed, impaired 
glucose metabolism and mitochondrial activity are common grounds 
for cognitive dysfunction and AD. The Metabolic syndrome (MetS) in 
mid-life may accelerate the progression of AD pathogenesis by activat-
ing an increased productions neuroinflammatory biomarkers leading to 
amyloid pathology degeneration. There remains an intricate crosstalk 
between the aging process, T2DM, MetS, and neuroinflammation, thus 
resulting in neuronal loss and the development of cognitive impairment 
with an accelerated risk of AD. Future studies are needed to identify 
potential therapeutic benefits related to improving neuroinflammation 
on cognitive performance. 
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INTRODUCTION

Aging is an inevitable event in the life cycle of all organisms, character-
ized by progressive physiological deterioration and greater vulnerability to 
death. 
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During aging, progressive alterations of the immune sys-
tem may lead to a reduced defense response to stress-
ors 1,2 and an increased production of specific markers of 
low-grade chronic systemic inflammation or inflammag-
ing  3.
Neuroinflammation may be one of the factors respon-
sible for the increased cognitive decline and risk of Alz-
heimer’s disease (AD) in type 2 diabetes (T2DM) 4.
Aging, as demonstrated by numerous studies, repre-
sents the most critical risk factor for AD. At the moment, 
there is a rapidly growing rise in AD cases worldwide. 
Considering that currently available drug treatments 
are unable to cure, the disease tends to progress ir-
reversibly with significant socioeconomic and personal 
costs  5. Interestingly, there are growing data demon-
strating how metabolic alterations, such as impaired 
glucose metabolism and mitochondrial dysfunction are 
closely related to AD and T2DM, leading to cognitive 
decline and AD development 6.
In this commentary paper, we will analyze potential links 
of neuronal loss due to neuroinflammation in aging, 
T2DM, and MetS leading to cognitive decline and an 
accelerated risk of developing AD.

NEUROINFLAMMATION AND AGE-RELATED 
COGNITIVE DECLINE 

Aging and age-related diseases share different biological 
mechanisms, referred as “hallmarks of aging”  7, which 
appear to be closely interconnected, forming a finely 
controlled network in which inflammation represents the 
“umbrella” that encompasses all these mechanisms 8.
Interestingly, the immune system reflects the exposure 
of each person to stress 9, and stress plays a crucial role 
in the deviation from good aging to disease onset 10.
In fact, aging is characterized by immunosenescence 
which involves a progressive impairment of immune cell 
function, causing reduced activity of natural and ac-
quired immunity 1,2. For a long time, immunosenescence 
has been considered a harmful phenomenon because 
it causes increased production of specific components 
of systemic inflammation, i.e., inflammaging, leading to 
a low-grade inflammatory state 3.
Recently, the concept of inflammaging has been revised 
by considering this phenomenon an adaptive process 
aimed at stimulating an appropriate anti-inflammatory 
response necessary to counterbalance environmental 
changes during aging  11. The different tissues (e.g., 
adipose and muscle) and organs (e.g., brain and liver) 
contribute differently to inflammaging, comporting spe-
cific systemic effects 12,13.
The central nervous system (CNS) is composed of 
different cell populations with unique characteristics 

necessary to cooperate in properly functioning this sys-
tem. In detail, neurons are highly specialized cells that 
play a crucial role in transmitting, processing, and stor-
ing information. On the other hand, non-neuronal cells, 
consisting of microglia and macroglia (i.e., astrocytes), 
perform other vital functions within the CNS 14.
Microglial cells are rather dynamic cells that are, in fact, 
the primary immune source in the CNS, tasked with 
participating in many vital functions ranging from vas-
culogenesis and neurogenesis to synapse and myelina-
tion through their motility properties, ability to release 
soluble factors and phagocytosis 15.
Interestingly, microglia’s functional “state” depends on 
the circumstance, i.e., the physiological conditions in 
which microglia cells are found depending on both the 
brain region and the temporal context. During aging, 
microglial cells change density, morphology, cytokine-
producing capacity, and phagocytic capacity 16. These 
age-related changes are accompanied by changes 
in intracellular composition, such as hypertrophy of 
lysosomes, endosomes, and peroxisomes and the 
progressive accumulation of lipofuscin, lipid droplets, 
and other debris  17-19. However, the effects of age on 
microglia do not necessarily present themselves as a 
loss of these functions but rather with altered reactivity 
and/or a state of hyperactivation. Indeed, microglial ag-
ing is associated with the upregulation of several mark-
ers, such as MHC II antigens and CD68, CD11b/CR3, 
CD14, as well as pattern recognition receptors 20,21.
In general, expression of these markers, which are as-
sociated with antigen presentation, lysosome function, 
and recognition of pathogens and complement pro-
teins, results in a more responsive microglia phenotype. 
It follows that activated microglial cells produce high 
levels of pro-inflammatory cytokines (e.g., tumour ne-
crosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-6 
(IL-6)), chemokines (e.g., monocyte chemoattractant 
protein-1 (MCP-1), reactive oxygen species (ROS) and 
nitric oxide (NOS) 22.
Whereas the role of anti-inflammatory cytokines (e.g., 
IL-10, transforming growth factor beta-1 (TGF-β1)) is to 
dampen microglia activation 23.
In addition, inflammatory mediators released by ac-
tivated microglial cells can induce hyperactivation of 
astrocytes, which in turn contribute to an increased 
inflammatory state by aggravating neuronal damage 24.
Considering these premises, glial cells play a key role in 
neuronal survival and modulation of neuroinflammation, 
ultimately helping to promote neuronal homeostasis 
and limit the onset and progression of neurodegen-
erative diseases. In turn, systemic inflammation could 
influence the aging of both microglia and astrocytes by 
exacerbating the responses of these cells to stimuli. 
Sustained glial activation and inflammation may make 
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the brain more susceptible to injury and/or neurodegen-
eration, affecting cognitive decline. Indeed, it has been 
widely underlined that the neuroprotective functions of 
glia may become impaired with age while neurotoxic 
responses are heightened 4.

NEUROINFLAMMATION AND TYPE 2 DIABETES

Type 2 diabetes (T2DM) is a chronic metabolic disor-
der characterized by hyperglycemia, which can dam-
age multiple organs, including the brain 25. Despite the 
broadly consistent link between diabetes, cognitive de-
cline, and dementia, the underlying causes of neurode-
generation in diabetic patients remain to be elucidated. 
Neuroinflammation is a strong candidate to explain, at 
least in part, the increased cognitive decline and de-
mentia risk in T2DM 26. 
Hyperglycemia itself plays a key role in triggering a neu-
roinflammatory state in diabetic patients. HG leads to the 
formation of advanced glycation end products (AGEs), 
which act on RAGE to increase NF-κB activation. Acti-
vated NF-κB increases pro-inflammatory gene expres-
sion, including RAGE itself and cytokines 27. Moreover, 
hyperglycemia induces oxidative stress by producing 
reactive oxygen species (ROS), stimulating the upregula-
tion of inflammatory cytokines such as tumor necrosis 
factor (TNF), IL-1, IL-2, and IL-6 28 and activating NF-κB 
pathway, resulting in damage to the blood-brain barrier 
(BBB)  29. ROS directly determines structural alterations 
of the gap junctions and modifies the communication 
pathways of astrocytes by damaging the BBB 24. BBB 
damaged by HG shows both thickening and increased 
permeability of the basement membrane, promoting 
endothelial cell proliferation, thus resulting in significant 
glucose influx into brain cells via glucose transporters 30. 
Due to the high glucose levels, pericytes and astrocytes 
have an elevated respiratory rate, thus increasing the pro-
duction of ROS and promoting oxidative stress 31. Such 
alterations determine an increase in the entry of glucose 
into the central nervous system (CNS) 28, responsible for 
neuronal damage and the consequent neurodegenera-
tion in diabetic patients 32. 
In addition to hyperglycemia, Toll-like receptor 4 (TLR4) 
signaling pathway represents a potential link between 
neuroinflammation and T2DM. In diabetic patients, 
chronic activation of TLR4 can stimulate the production 
of proinflammatory cytokines such as TNF-α and IL-6 
and activate PI3K, resulting in insulin resistance and 
impaired glucose metabolism. These alterations lead to 
mitochondrial dysfunction 33.
The relationship between mitochondrial dysfunction 
and oxidative stress has been extensively studied, while 
the relationship between mitochondrial dysfunction and 

neuroinflammation must be established. Mitochondrial 
dysfunction caused by HG-induced by ROS overpro-
duction leads to upregulation of mitochondrial heat 
shock protein 60 (HSP60). The excess of HSP60 stimu-
lates the production of inflammatory mediators, result-
ing in neuroinflammation in neurons and in astrocytes. 
HSP60 levels are particularly elevated in the brain cells 
of diabetic patients and could therefore be used as a 
possible future biomarker of neuroinflammation 26.
Numerous studies have tried to prevent and improve 
the development of cognitive and behavioral disorders 
associated with diabetes 34.

NEUROINFLAMMATION AND ALZHEIMER’S 
DISEASE (AD): A ROLE OF COMMON 
MECHANISMS RELATED TO TYPE 2 DIABETES 

Studies have shown that T2DM is strongly associated 
with neurodegeneration in AD  35. AD is characterized 
by cognitive dysfunction and progressive neurodegen-
eration with amyloid plaques and neurofibrillary tangles. 
AD is the most common cause of dementia and post-
mortem brain tissue exhibits protein aggregation, mito-
chondrial dysfunction and neuroinflammation (Fig. 1) 36.
Recent studies have also attributed a role to the intestinal 
microbiota in the pathogenesis of AD. In fact, infectious 
agents can initiate the degenerative process by sup-
porting chronic inflammation and leading to progressive 
neuronal damage and amyloid deposition37. Even though 
substantial data underlies that aging is the most critical 
risk factor for AD, there is continuously rising data that 
metabolic disturbances have been associated with AD 
and T2DM 38. Indeed, altered glucose metabolism and 
mitochondrial activity are common soil for cognitive dys-
function and AD 6. Metabolic alterations contributing to 
normal neuronal function and decreased glucose me-
tabolism occur in AD brains 39. A recent brain MRI study 
revealed the presence of AD- like functional-metabolic 
neurovascular coupling (NVC) in the brain of T2DM pa-
tients 40. T2DM represents one of the key components 
of the Metabolic syndrome (MetS) including obesity, 
hypertension, and cardiovascular diseases. In a recent 
report, APP/PS1/Sirt3−/− mice with a superimposed 
MetS with amyloid pathology found that Sirt3 gene de-
letion resulted in insulin resistance, neuroinflammation, 
plaque deposition, and microgliosis AD mouse model. 
The authors underlined that MetS in mid-life may interact 
with amyloid pathology during the cellular phase and ac-
celerate the progression of AD pathogenesis 41. Indeed, 
AD often coexists with other microvascular lesions due 
to hypertension, cardiovascular disease, and diabetes. 
Slow progressive cognitive impairment (mild cogni-
tive impairment) is preceded by decades of prodromal 
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cellular alterations due to neuroinflammation 19. As previ-
ously mentioned, chronic hyperglycemia plays a critical 
role in neuroinflammation, and genome wide association 
studies (GWAS) have strongly suggested a role of the 
metabolic syndrome on microglia dysregulation by a de-
fective NAD+ sirtuin pathway. Sirtuin (SIRT) proteins are 
a family of seven signaling proteins involved in longevity 
and metabolic regulation. SIRT3 is highly expressed in 
brain cells 42. SIRT3’s functions in peripheral tissues also 
indirectly affect brain function by suppressing chronic 
inflammation, enhancing antioxidant defense, and as-
sisting in the generation of energy substrates for brain 
cells. SIRT3 is exclusively present in mitochondria and 
plays a significant role in metabolic adaptation by its 
ability to deacetylate and activate key enzymes and 
transcriptional regulators (i.e. NaD+). Indeed, brain tissue 
metabolism is high with no reserve and thus, neuroin-
flammation may cause cell death through mitochondrial 
dysfunction. There is growing data on the role of SIRT3 
on neuronal death, astrocytes, and microglia. Therefore, 
mechanisms related to SIRT3 activity may hold an im-
portant potential for treating AD 42. Other studies have 
also indicated potential mechanisms related to ame-
liorating neuroinflammation on cognition. Parthenolide 
(PTL) is a potent inhibitor of NF-κB that can cross the 
BBB. In just three weeks, PLT administration resulted in 
improved cognition in diabetic mice in Morris water maze 

and passive avoidance tests. Furthermore, PLT-treated 
rats had significantly reduced levels of TNF-α and IL-6 in 
the cortex and hippocampus 34.
Pioglitazone (PGT), a PPAR-γ agonist, reduced TNF-α 
and IL-6 levels in the prefrontal cortex of diabetic mice, 
improving memory and exploratory activity in behavioral 
tests after a 14-day treatment 43.
Hyperoside (HYP), a bioactive flavonoid glycoside, 
is another substance which counteracts the neuroin-
flammatory process, mitigating hyperlipidemia, HG, 
oxidative stress, cognitive dysfunction, TNF-α/NF-κB-
mediated neuroinflammation and apoptosis in type 2 
diabetic rats 44.
Neuroinflammation could also be prevented by the ad-
ministration of vitamin D3 (Vit. D) and/or rosuvastatin 
(RSV). Vit. D and RSV modulate canonical/non-canon-
ical WNT/Beta-catenin signaling, which has important 
roles in cell survival, synaptic plasticity 45, learning and 
memory  46, and restore the hippocampal balance be-
tween anti-inflammatory IL-27 and pro-inflammatory 
IL-23 relieving T2DM cognitive dysfunction 47.
SGLT2 inhibitors (SGLT2i) and GLP-1R agonists (GLP-
1RA) are key drugs in the current therapy of diabetic 
patients. In pre-clinical studies, SGLT2i ameliorates 
cognitive dysfunction in obese and T2DM mice, reduc-
ing oxidative stress, neuroinflammation and improving 
neuronal plasticity and mitochondrial brain pathway 48.

Figure 1. Neuroinflammation, as a common pathway of aging, type 2 diabetes and metabolic syndrome on cognitive decline and AD.  
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In several preclinical studies, GLP-1RA reduced neu-
roinflammation and could be involved in therapeutic 
strategies to counter neurodegeneration 49. 
In a clinical study, diabetic patients were treated with 
GLP-1RA plus metformin (MET) or MET alone for at 
least 12 months. Patients receiving the combination 
therapy had better cognitive function, as assessed by 
the administration of the Montreal Cognitive Assess-
ment Test (MoCA), Mini-Mental State Examination 
(MMSE), Mini Nutritional Assessment (MNA), and dis-
ability tests. However, the efficacy, safety, and tolerabil-
ity of GLP-1RA need to be further confirmed in other 
human clinical studies 50.
DPP4 (dipeptidyl peptidase-4) inhibitors and GLP-1 
inhibitors are a class of drugs used to treat T2DM by 
increasing the levels of incretin hormones, which stimu-
late insulin secretion. Numerous scientific research 
has shown a correlation between DPP4 and GLP-1 
inhibitors on neuroinflammation related to cognitive 
decline 51,52.

CONCLUSIONS 

The aging process itself, T2DM and components of 
the MetS are closely related to neuroinflammation with 
consequent neuronal loss and development of cogni-
tive impairment with an accelerated risk of dementia. 
Considering the exponential growth of older persons 
living longer with T2DM and MetS, future studies should 
be aimed at identifying potential therapeutic benefits re-
lated to correcting neuroinflammation.
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