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INTRODUCTION

In the elders, heart failure (HF) shows clinical features 
that are substantially different to those observed in the 
adult population. In fact, in patients over 75 years, this 
syndrome predominantly affects women with isolated 
systolic hypertension, normal left ventricular ejection 
fraction, and several extracardiac comorbidities. In this 
regard, since 2000, Rich et al. identified the main char-
acteristics of HF in the elderly population and paved 
the way for the nosographic identification of a new car-
diovascular syndrome, to date known as heart failure 
with preserved ejection fraction (HFpEF)  1. Nearly half 

of all patients with HF symptoms have HFpEF and the 
prevalence of this pathologic condition is rising being 
aging one of the most important risk factors. The clinical 
outcomes of HFpEF are similar to those with HFrEF. In 
fact, 30-day to 1-year mortality post hospital discharge 
is similar between HFpEF and HFrEF and patients with 
either HF syndrome show similar functional limitations 
and poor quality of life  2-10. On the other hand, mor-
bidity and cause of death are quite different between 
the two syndromes, being HFpEF predominantly as-
sociated with extracardiac comorbidities and deaths of 
non cardiac causes. The peculiarities of HFpEF imply 
many challenges for the researchers and the clinicians 
for several reasons: the population affected by HFpEF 
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is very heterogeneous and its inclusion in clinical tri-
als is particularly difficult, especially for the oldest-old; 
mechanistic hypothesis are still lacking due to limited 
access to biopsies from human heart tissues and the 
difficulties in obtaining adequate experimental models; 
the pathophysiological mechanisms accounting for this 
syndrome are often multifactorial, thus explaining why 
there is no evidence based therapy, to date, showing 
efficacy on the hard outcomes, such as morbidity and 
mortality 11-15.
Overall, HFpEF is a very challenging syndrome, af-
fecting, in the most of cases, patients vulnerable and 
frail, with high health care costs due to high number 
of hospitalizations and medical cares. This review aims 
to report recent advances in the knowledge of the 
pathophysiology of HFpEF that can help for a better 
understanding of the mechanisms potentially involved 
in the onset and progression of such devastating car-
diovascular disease. 

EXTRACARDIAC COMORBIDITIES, SYSTEMIC 
INFLAMMATION AND HFPEF

More and more evidence are accumulating on the role 
of inflammation in the pathogenesis of HFpEF. Results 
from left ventricular (LV) endomyocardial biopsy 16 and 
analyses of inflammatory cell markers  17 indicate in-
creased oxidative stress and depressed NO-signaling 
resulting in inflammation. Importantly, the presence 
of multiple comorbidities in HFpEF may significantly 
contribute to a systemic pro-inflammatory state which 
negatively affects the myocardium. 
Chronic kidney disease (CKD) occurs in one third of 
HFpEF patients and is associated with poor progno-
sis 7 18 19. Albuminuria, occurring in almost 30% of HF-
pEF patients, leads to activation of the RAAS system, 
and systemic inflammation. It has been hypothesized 
a bidirectional continuum between renal dysfunction 
and HFpEF. CKD may lead by itself to myocardial 
inflammation, fibrosis, and resultant HFpEF. On the 
other hand, HFpEF may cause renal dysfunction by 
triggering RAAS pathway activation and venous con-
gestion. In this regard, there are several pathways that 
may link renal and cardiac disease such as transient 
receptor potential channel-6, a Gq-receptor and ROS 
activated nonselective cation channel that plays an 
important role in proteinuria and glomerular dysfunc-
tion 20 but that can also induce cardiac hypertrophy 21 
and fibrosis 22.
Chronic inflammation is obviously associated to chronic 
obstructive pulmonary disease (COPD), which is a cru-
cial determinant of HFpEF mortality  23. Furthermore, 
sleep disordered breathing, often associated to COPD 

and HF, lead to systemic inflammation, other than adr-
energic and oxidative activation 24.
Iron deficiency and anemia also contribute to immune 
responses, systemic inflammation and oxidative stress 
in HFpEF 25.
Diabetes mellitus (DM) is a common comorbidity in HF-
pEF and has a significant negative impact on progno-
sis. Insulin resistance in diabetes mellitus increases free 
fatty acid utilization by cardiomyocytes, thus leading to 
mitochondrial dysfunction, production of toxic lipid in-
termediates, and increased reactive oxygen species 26. 
Increased visceral fat, frequently seen in the DM popu-
lation, also results in the release of proinflammatory 
cytokines. Hyperglycemia-induced advanced glycation 
end-products impair microvascular function and de-
crease nitric oxide availability 26. 
Sarcopenia is another common condition in HFpEF. 
Frail patients with  HFpEF  are frequently affected 
by sarcopenia, which is a major component of the 
pathophysiology of frailty  27.  Sarcopenia, given the 
impairment  of limb and respiratory skeletal muscles 
leading to further functional decline, may contribute to 
cardiovascular remodelling and dysfunction and to the 
development of  HFpEF  through systemic inflamma-
tion and different metabolic and endocrine abnormali-
ties 28.
The incidence of new-onset depression is high in HF 
(5.7-7.9%). The pathophysiology underlying the ad-
verse effect of depression in HF patients has not been 
delineated. Potential factors linking depression with HF 
include activation of inflammatory cascades, dysregula-
tion of neurohormonal axes, arrhythmias, and behav-
ioural effects 29.
All these comorbidities induce a systemic proinflamma-
tory state with elevated plasma levels of interleukin (IL)-
6, tumor necrosis factor (TNF)-a, soluble ST2 (sST2), 
and pentraxin 3 30. Coronary microvascular endothelial 
cells reactively produce reactive oxygen species, vas-
cular cell adhesion molecule (VCAM), and E-selectin. 
Production of ROS leads to formation of peroxynitrite 
and reduction of nitric oxide bioavailability with conse-
quent lower soluble guanylate cyclase (sGC) activity in 
cardiomyocytes. Lower sGC activity decreases cyclic 
guanosine monophosphate concentration and protein 
kinase G (PKG) activity. This represents a prohyper-
trophic stimuli inducing cardiomyocyte hypertrophy. 
Endothelial expression of VCAM and E-selectin is as-
sociated to monocytes migration into the subendothe-
lium which release transforming growth factor, thus 
stimulating conversion of fibroblasts to myofibroblasts, 
with consequent deposition of collagen in the interstitial 
space.
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EPICARDIAL ADIPOSE TISSUE MEDIATES 
DELETERIOUS EFFECTS OF OBESITY AND 
INFLAMMATION ON THE MYOCARDIUM IN 
HFPEF

Obesity promotes systemic inflammation  31 32 and ex-
acerbates the inflammatory burden imposed by many 
chronic extracardiac comorbidities. Importantly, the 
chronic systemic inflammation related to obesity is ac-
companied by a significant increase of epicardial adi-
pose tissue (EAT) mass 33. It is known that inflammation 
may lead to adipogenesis. This represents an adaptive 
mechanism preventing the deposition of proinflamma-
tory fatty acids in cells 34. Interestingly, EAT is more sen-
sitive to lipogenesis than other types of visceral adipose 
tissue 35. In fact, it contains plastic mesenchymal cells 
that are the source of progenitor cardiomyocytes during 
fetal development but, in adulthood, differentiate into 
adipocytes 36). Systemic inflammation affects the biol-
ogy of EAT 37-39, promoting its transition toward a proin-
flammatory phenotype 40. Several observations support 
the hypothesis that the inflammation of EAT can act in 
a paracrine manner to influence the structure and func-
tion of neighboring tissues  41  42. Furthermore, the re-
lease of proinflammatory adipocytokines from EAT into 
the general circulation may contribute to the systemic 
inflammatory state; systemic inflammation, in turn, can 
promote the accumulation of EAT, which induces local 
and systemic inflammation and end-organ dysfunction, 
thus creating a bidirectional continuum 43-48.
Therefore, obesity, such as other extracardiac comor-
bidities, promotes changes in the physiological char-
acteristics of EAT which starts to produce and secrete 
proinflammatory factors. Of these, leptin, tumor necrosis 
factor-a, interleukin 1-β, interleukin-6, and resistin pro-
mote the infiltration of macrophages, destroy microvas-
cular systems, and activate profibrotic pathways 49-52. As 
regard to leptin, it is known that obesity is characterized 
by high circulating levels of aldosterone, secreted by 
adipocytes or directly released from the adrenal gland in 
response to leptin 53. This is also exacerbated by a loss 
of the antialdosterone action of natriuretic peptides given 
the increased neprilysin activity in obesity. Visceral adi-
posity also leads to increased signaling through the leptin 
receptor, which causes sodium retention by a direct ac-
tion on the renal tubules. EAT-derived leptin promotes 
cardiac inflammation, microcirculatory abnormalities, 
and fibrosis. The resulting interaction of aldosterone and 
leptin promotes plasma volume expansion and regional 
and systemic inflammation and fibrosis.
Another important mechanism by which EAT may ex-
ert an unfavourable activity for the myocardium and 
causes cardiac damage depends on the migration of 

EAT derived mesenchymal stem cells to the neighbor-
ing myocardium and differentiation of these cells into 
fibroblasts 54-56.
There are several experimental and clinical studies 
indicating a relationship between EAT volume and in-
flammatory profile and the degree of cardiac inflamma-
tion 43 50 57 58. It is widely recognized that EAT, especially 
the periatrial fat, may represent an inflammatory sub-
strate acting as a trigger for the development of atrial 
arrhythmias  59-64. Interestingly, increased volume and 
proinflammatory abnormalities of EAT are close to myo-
cardial areas of myocardium characterized by marked 
electrophysiological derangement  65  66. In obese indi-
viduals, increased EAT volume is significantly associ-
ated with an impaired myocardial microcirculation, ab-
normalities of cardiac diastolic properties and increased 
vascular stiffness, and left atrial dilatation 67-70. In these 
patients, structural and functional abnormalities of EAT 
often precedes clinical presentation of HFpEF  71-74. 
Another important evidence supporting the role of EAT 
as transducer of inflammatory signals derives from the 
observation of the structural abnormalities of cardiac 
visceral fat in patients affected by chronic systemic in-
flammatory disorders. In this regard, patients with rheu-
matoid arthritis, human immunodeficiency, virus infec-
tion, psoriasis, show increased EAT mass that is also 
associated to alterations of cardiac microcirculation, 
myocardial fibrosis, and cardiac diastolic abnormalities, 
that are all typical of HFpEF 75-79. This may explain the 
significant higher risk of developing HF in these clinical 
settings. 
If it is true that extracardiac comorbidities contribute to 
the pathogenesis of HFpEF, it is also evident that EAT 
may play a role, through the release of proinflamma-
tory adipocytokines, in exacerbating the dysfunction of 
visceral organs, other than the heart. In fact, increased 
EAT volume is associated to inflammation and fibrosis 
in the kidneys, lungs, liver, and brain, whose dysfunc-
tion participates to the clinical features of HFpEF 80-82. 

EAT AND CARDIAC SYMPATHETIC 
DENERVATION IN HF

Cardiac sympathetic nervous system (SNS) hyperactiv-
ity is associated to HF  1-6 and represents a compen-
satory mechanism to the loss of cardiac contractility 
aiming at increasing myocardial inotropism to preserve 
cardiac output. However, in the long term, this mecha-
nism is associated to unfavourable cardiac remod-
eling and increased mortality  83-88. In the failing heart, 
a defect of neuronal norepinephrine reuptake caused 
by post-transcriptional downregulation of the cardiac 
norepinephrine transporter  89-93 leads to an increase 
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in norepinephrine concentration in the sympathetic 
synapses. This is responsible for impaired myocardial 
β-adrenergic receptor system and functional and ana-
tomic sympathetic denervation of the heart 94 95.
Although SNS hyperactivity in HF is mainly mediated 
by norepinephrine-releasing neurons and by circulating 
norepinephrine and epinephrine, other mechanisms 
may contribute to sympathetic derangement. For ex-
ample, the adipose tissue, particularly the visceral fat 
depots, may stimulate central SNS activity through 
dysregulated adipokines production and secretion 96 97. 
In addition, experimental studies have recently dem-
onstrated that adipocytes produce and secrete both 
norepinephrine and epinephrine 98, thus indicating that 
the sympathetic fibers within adipose tissue are not the 
only source of catecholamines. In a recent study, Parisi 
et al have demonstrated, in HF patients, that EAT rep-
resents an important source of norepinephrine, whose 
levels are 2-fold higher than those found in plasma 99. 
Because of the EAT proximity to the myocardium, the 
increase in catecholamine content in this tissue could 
result in a negative feedback on cardiac sympathetic 
nerves, which are associated with the ventricular 
myocardium, thus inducing a functional and anatomic 
denervation of the heart. Therefore, in the context of 
a widespread SNS hyperactivity in HF, EAT seems to 
play an additive role in generating the final net effect 
of cardiac sympathetic denervation. In this study, the 
EAT thickness, assessed by echocardiography, was an 
independent predictor of 123I-MIBG planar and SPECT 
scintigraphic parameters (indexes of cardiac sympa-
thetic innervation) and provided additional predictive 
information on cardiac adrenergic nerve activity respect 
to important demographic, clinical, and left ventricular 
function parameters. Therefore, assessing EAT thick-
ness in patients with HF may provide surrogate informa-
tion on the status of cardiac adrenergic derangement 
that is strongly correlated with worse prognosis in HF. 
In another study, Parisi et al. also explored the relation-
ship between the presence of sleep disordered breath-
ing and EAT thickness in patients with HF  100. They 
found a significant correlation between the EAT increase 
and the presence and the severity of sleep apneas and 
a significant increase of circulating norepinephrine in 
patients with central sleep apnea (CSAs). These data 
confirm the results of previous study exploring SNS 
activation in HF patients with prevalent obstructive or 
central sleep apneas (CSAs). According to results of 
Parisi et al, all these studies indicate that CSAs are as-
sociated with a greater SNS activation 101-103). 
Overall these evidence indicate EAT as a possible con-
tributor to SNS activation in HF, thus reinforcing the 
negative activity of cardiac visceral fat in the pathogen-
esis and progression of HF.

EAT AS A POTENTIAL THERAPEUTIC 
TARGET IN HF

Given the recognized role of EAT in the pathophysiol-
ogy of HFpEF, it should be desirable to identify specific 
therapies targeting the cardiac visceral fat and able to 
modulate its pro-inflammatory profile and the negative 
effect of the inflammatory burden on the neighboring 
myocardium. The discovery of new drugs for HFpEF is 
dramatically needed since the lack, to date, of evidence 
based therapy able to ameliorate the outcomes of this 
syndrome. In this rewiew, we report the results of recent 
studies focusing on this topic.
Statins have been shown to reduce both EAT accumu-
lation and inflammatory status in HF patients 104 105. In a 
recent study, Parisi et al. 106-108 explored, in a population 
of elderly patients with calcific aortic stenosis, a clinical 
model of HFpEF, whether statin therapy might affect EAT 
accumulation and inflammatory profile. Major findings 
of this study was that statin therapy was significantly 
associated to a reduced EAT thickness. Furthermore, 
the association between statin therapy and reduction 
of EAT accumulation was paralleled by an attenuation 
of EAT inflammatory profile. Finally, in vitro studies con-
ducted on the EAT secretomes, obtained from patients 
with aortic stenosis, indicated that statin had a direct 
and selective anti-inflammatory effect on EAT. 
These evidence may explain why statins, independently 
from their antihyperlipidemic effect, reduce the develop-
ment of ventricular diastolic abnormalities, myocardial 
microcirculatory alterations, and cardiac fibrosis 109-111. 
Furthermore, the use of statins in patients with HFpEF 
is associated with a reduced risk of death in several 
observational studies 112 113. 
Patients with type 2 diabetes show a marked increase 
in the amount of EAT and a high incidence of HFpEF has 
been reported in this population 114. Importantly, many 
antidiabetic drugs cause weight gain, thus inducing a 
further increase of adipogenesis and of EAT. In this re-
gard, insulin increases the volume of EAT 39 73; this may 
explain, at least in part, why its use is associated with 
an increased risk of heart failure 115. Sulfonylureas pro-
mote the insulin activity on adipocytes and enhance the 
secretion of proinflammatory adipokines 116-118. Thiazo-
lidinediones reduce EAT volume and inflammation and 
the secretion of proinflammatory adipocytokines 119-122. 
Newer antihyperglycemic medications, such as gluca-
gon-like peptide 1 receptor antagonists are typically 
associated with weight loss and may reduce the ac-
cumulation of EAT  123, although they do not revert its 
pro-inflammatory phenotype  124  125. This may explain 
why these drugs do not affect the HF outcome in clini-
cal trials 126 127. Although other antidiabetic drugs, such 
as dipeptidyl peptidase-4 inhibitors are able to reduce 
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the volume of EAT 128, they may exacerbate its inflam-
matory state and lead to cardiac fibrosis  129-131. This 
finding explains why dipeptidyl peptidase-4 inhibitors 
negatively affect cardiac remodeling and increase the 
risk of HF in patients with type 2 diabetes 132. 
It has been recently demonstrated that sodium-glucose 
cotransporter 2 inhibitors not only reduce the amount of 
EAT, but also ameliorate its inflammation and its secretion 
of pro-atherosclerotic and pro-fibrotic cytokines  133  134. 
This may explain why these drugs reduce myocardial 
fibrosis and improve ventricular diastolic properties 135-137 
and reduce the risk of several HF outcomes in observa-
tional studies and randomized controlled trials 138-141.
Given the ability of mineralocorticoid receptor an-
tagonists, such as eplerenone to revert inflammation in 
visceral adipose tissue of obese individuals 142, further 
studies are desiderable to confirm this effect also in 
EAT. Preliminary data on these drugs indicate a favour-
able activity to reduce cardiovascular events in patients 
with HFpEF 143. 
Recent encouraging evidence indicate a positive activ-
ity of neprilysin inhibition in HFpEF 144. This drug could 
counteract the breakdown of natriuretic peptides that is 
known to be accelerated in HFpEF. 
Finally, the prominent role of inflammation in HFpEF rep-
resents an important motivation for the current research 
to explore the efficacy of drugs targeting circulating and 
local inflammatory mediators. The results of the recent 
CANTOS trial have demonstrated that inhibition of In-
terleukin 1β has potent effect on cardiovascular mor-
bidity and mortality in patients with previous myocardial 
infarction  145. Future studies are needed the potential 
role of immune therapy also in HFpEF. 

CONCLUSIONS

Accumulating evidence strongly support the role of 
structural and functional changes of EAT in the patho-
genesis of HFpEF. Many inflammatory factors produced 
by cardiac visceral fat may penetrate the myocardium 
and coronary vessels in a paracrine and vasocrine man-
ner and express their toxicity in the neighboring tissue. 
This promotes profound cardiac alterations such as 
fibrosis, alterations of left ventricular filling, derange-
ment of electrophysiological properties, and sympa-
thetic denervation that are all crucial factors for the 
development of HFpEF. Although it is widely recognized 
the multifactorial nature of HFpEF, EAT represents an 
intriguing target for future therapeutic strategies since 
its tight interconnection with the heart and its prominent 
role in enhance local and systemic inflammation. The 
epidemiological explosion of HFpEF and the lack of ef-
ficacious therapy strengthen the need to explore novel 

mechanisms and innovative therapeutic approaches 
to face the dramatic increase of cardiovascular deaths 
that are expected in the next decades.
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